Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Information Fusion ; 89:53-65, 2023.
Article in English | Web of Science | ID: covidwho-2084435

ABSTRACT

The use of automatic systems for medical image classification has revolutionized the diagnosis of a high number of diseases. These alternatives, which are usually based on artificial intelligence (AI), provide a helpful tool for clinicians, eliminating the inter and intra-observer variability that the diagnostic process entails. Convolutional Neural Network (CNNs) have proved to be an excellent option for this purpose, demonstrating a large performance in a wide range of contexts. However, it is also extremely important to quantify the reliability of the model's predictions in order to guarantee the confidence in the classification. In this work, we propose a multi-level ensemble classification system based on a Bayesian Deep Learning approach in order to maximize performance while providing the uncertainty of each classification decision. This tool combines the information extracted from different architectures by weighting their results according to the uncertainty of their predictions. Performance is evaluated in a wide range of real scenarios: in the first one, the aim is to differentiate between different pulmonary pathologies: controls vs bacterial pneumonia vs viral pneumonia. A two-level decision tree is employed to divide the 3-class classification into two binary classifications, yielding an accuracy of 98.19%. In the second context, performance is assessed for the diagnosis of Parkinson's disease, leading to an accuracy of 95.31%. The reduced preprocessing needed for obtaining this high performance, in addition to the information provided about the reliability of the predictions evidence the applicability of the system to be used as an aid for clinicians.

2.
9th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2022 ; 13258 LNCS:114-124, 2022.
Article in English | Scopus | ID: covidwho-1899007

ABSTRACT

Estimating the capacity of a room or venue is essential to avoid overcrowding that could compromise people’s safety. Having enough free space to guarantee a minimal safety distance between people is also essential for health reasons, as in the current COVID-19 pandemic. Already existing systems for automatic crowd counting are mostly based on image or video data, and some of them, using deep learning architectures. In this paper, we study the viability of already existing Deep Learning Crowd Counting systems and propose new alternatives based on new network architectures containing convolutional layers, exclusively based on the use of environmental audio signals. The proposed architecture is able to infer the actual capacity with a higher accuracy in comparison to previous proposals. Consequently, conclusions from the accuracy obtained with out approach are drawn and the possible scope of deep learning based crowd counting systems is discussed. © 2022, Springer Nature Switzerland AG.

SELECTION OF CITATIONS
SEARCH DETAIL